Publications

Hybrid Physics-Machine Learning Models for Quantitative Electron Diffraction Refinements

High-fidelity electron microscopy simulations required for quantitative crystal structure refinements face a fundamental challenge: while physical interactions are well-described theoretically, real-world experimental effects are challenging to model analytically. To address this gap, we present a novel hybrid physics-machine learning framework that integrates differentiable physical simulations with neural networks. By leveraging automatic differentiation throughout the simulation pipeline, our method enables gradient-based joint optimization of physical parameters and neural network components representing experimental variables, offering superior scalability compared to traditional second-order methods. We demonstrate this framework through application to three-dimensional electron diffraction (3D-ED) structure refinement, where our approach learns complex thickness distributions directly from diffraction data rather than relying on simplified geometric models. This method achieves state-of-the-art refinement performance across synthetic and experimental datasets, recovering atomic positions, thermal displacements, and thickness profiles with high fidelity. The modular architecture proposed can naturally be extended to accommodate additional physical phenomena and extended to other electron microscopy techniques. This establishes differentiable hybrid modeling as a powerful new paradigm for quantitative electron microscopy, where experimental complexities have historically limited analysis.

Accelerating Long-period Exoplanet Discovery by Combining Deep Learning and Citizen Science

Automated planetary transit detection has become vital to identify and prioritize candidates for expert analysis and verification given the scale of modern telescopic surveys. Current methods for short-period exoplanet detection work effectively due to periodicity in the transit signals, but a robust approach for detecting single-transit events is lacking. However, volunteer-labeled transits collected by the Planet Hunters TESS (PHT) project now provide an unprecedented opportunity to investigate a data-driven approach to long-period exoplanet detection. In this work, we train a 1D convolutional neural network to classify planetary transits using PHT volunteer scores as training data. We find that this model recovers planet candidates (TESS objects of interest; TOIs) at a precision and recall rate exceeding those of volunteers, with a 20% improvement in the area under the precision-recall curve and 10% more TOIs identified in the top 500 predictions on average per sector. Importantly, the model also recovers almost all planet candidates found by volunteers but missed by current automated methods (PHT community TOIs). Finally we retrospectively utilise the model to simulate live deployment in PHT to reprioritize candidates for analysis. We also find that multiple promising planet candidates, originally missed by PHT, would have been found using our approach, showing promise for upcoming real-world deployment.

High-Cadence Thermospheric Density Estimation enabled by Machine Learning on Solar Imagery

Accurate estimation of thermospheric density is critical for precise modeling of satellite drag forces in low Earth orbit (LEO). Improving this estimation is crucial to tasks such as state estimation, collision avoidance, and re-entry calculations. The largest source of uncertainty in determining thermospheric density is modeling the effects of space weather driven by solar and geomagnetic activity. Current operational models rely on ground-based proxy indices which imperfectly correlate with the complexity of solar outputs and geomagnetic responses. In this work, we directly incorporate NASA’s Solar Dynamics Observatory (SDO) extreme ultraviolet (EUV) spectral images into a neural thermospheric density model to determine whether the predictive performance of the model is increased by using space-based EUV imagery data instead of, or in addition to, the ground-based proxy indices. We demonstrate that EUV imagery can enable predictions with much higher temporal resolution and replace ground-based proxies while significantly increasing performance relative to current operational models. Our method paves the way for assimilating EUV image data into operational thermospheric density forecasting models for use in LEO satellite navigation processes.